Increased frequencies of glutathione S-transferase (\textit{GSTM1} and \textit{GSTT1}) gene deletions in Korean patients with acquired aplastic anemia

Kyung A. Lee, Sun Hee Kim, Hee Yeon Woo, Young Joon Hong, and Hyoun Chan Cho

Patients with reduced ability to metabolize environmental carcinogens or toxins may be at risk of developing aplastic anemia. Glutathione S-transferase (GST) has been implicated in detoxifying mutagenic electrophilic compounds. This study asked whether the homozygous gene deletions of \textit{GSTM1} and \textit{GSTT1} affect the likelihood of developing aplastic anemia. The incidence of \textit{GSTM1} and \textit{GSTT1} gene deletions was significantly higher for aplastic anemia patients (odds ratio [OR]: 3.1, \(P = .01\)) and OR: 3.1, \(P = .004\)) than for healthy controls. Among the aplastic anemia patients, 17.5% (10:57) had chromosomal abnormalities at the time of diagnosis, and all aplastic anemia patients with chromosomal abnormalities showed \textit{GSTM1} gene deletions (\(P = .048\)). Individuals with \textit{GSTM1} and \textit{GSTT1} gene deletions may have greater susceptibility to aplastic anemia. It is possible that genetic instability or chromosomal damage due to abnormal detoxification of environmental toxins might have worked as an important pathophysiologic mechanism of aplastic anemia for patients with \textit{GSTT1} gene deletions. (\textit{Blood}. 2001;98:3483-3485)

© 2001 by The American Society of Hematology

Introduction

Aplastic anemia has an age-adjusted incidence of 11.0 per million population per year in Korea and in Japan, and 2.2 in Europe and in the United States. Many studies have suggested the pathophysiologic role of immunologically mediated bone marrow failure, and in practice, most patients with aplastic anemia respond favorably to immunosuppressive therapies. However, this hypothesis has limitations in explaining the ethnic differences in the prevalence of aplastic anemia and the chromosomal instability associated with aplastic anemia. Toxic environmental factors, such as drugs, chemicals, and infections, and inherited genetic factors have been postulated to contribute to the etiology of aplastic anemia. The exact mechanism of drug-induced aplastic anemia is unknown and may involve specific metabolic pathways as well as aberrant immune responses. A case of anticonvulsant-induced aplastic anemia first provided evidence of the role of drug metabolites in aplastic anemia in humans and suggested that the increased susceptibility to toxicity might be based on an inherited abnormality in metabolite detoxification. It is therefore possible that patients with reduced ability to metabolize environmental carcinogens or toxins are at risk of developing aplastic anemia. An animal study for benzene-induced hematotoxicity conducted according to differences in xenobiotic detoxifying activities of bone marrow stromal cells supported the hypothesis that the inherited absence of a xenobiotic enzyme, especially the glutathione S-transferase (GST) of the detoxification pathway, is an important determinant of aplastic anemia.

The \(\mu\) (\textit{GSTM1}) and \(\theta\) (\textit{GSTT1}) members of the GST multigene family, which are polymorphic in humans, are involved in detoxifying mutagenic electrophilic compounds, and an increased frequency of these \textit{GST} gene deletions has been associated with several malignancies. The present study investigated whether homozygous gene deletions of \textit{GSTM1} and \textit{GSTT1} increase the incidence of aplastic anemia and explored the relationship between the GST genotype and the chromosomal abnormalities in aplastic anemia patients to clarify the multistep pathogenesis of aplastic anemia based on this possible genetic predisposition.

Study design

Bone marrow (BM) samples from 57 patients with idiopathic severe aplastic anemia (male-female ratio, 29:28; median age, 31 years; range, 5-84 years) and peripheral blood samples from 75 healthy controls (male-female ratio, 38:37; median age, 38 years; range, 19-62 years) were analyzed. No patients had a clinical history of occupational or drug exposures or of viral infections such as hepatitis.

Chromosome and fluorescence in situ hybridization analysis

Cyogenetic studies on BM samples at the initial diagnosis were performed using the standard G-banding with trypsin-Giemsa staining, and karyotypes were interpreted according to the International System for Cytogenetic Nomenclature. For 18 patients who showed no analyzable mitotic cells or fewer than 5 metaphases in the conventional chromosome analysis, the interphase fluorescence in situ hybridization (FISH) analysis was performed using CEP 8 and 7 (Vysis, Downers Grove, IL) for the detection of trisomy 8 and monosomy 7, the most commonly reported chromosomal abnormalities in patients with aplastic anemia. FISH was done according to the protocol supplied by Vysis. The cutoff levels obtained from 15 control samples for trisomy 8 and monosomy 7 were 1.2% and 4.8%, respectively.

Multiplex polymerase chain reaction for polymorphic analysis of \textit{GSTM1} and \textit{GSTT1}

The genetic polymorphism analysis for the \textit{GSTM1} and \textit{GSTT1} genes was determined using the multiplex polymerase chain reaction (PCR) procedure...
of Abdel-Rahman et al. Isolated DNA (50 ng) was amplified in a 50-μL reaction mixture containing 30 pmol of each of the following: GSTM1 primers of 5′-GAA CTC CCT GAA AAG CTA AAG C-3′, 5′-GGT GGT CTC AAA TA T ACG GTG G-3′ and GSTT1 primers of 5′-TTCC TTG GAA GTG CTC-3′ and GSTM1 of 5′-GTT CCT CAC A TC TC-3′ and 2 U Taq polymerase. The PCR conditions consisted of an initial melting step (95°C, 5 minutes) and annealing (59°C, 1 minute), and the extension step (72°C) of the PCR reaction mixture containing 30 pmol of each of the following: 9 m(dNTP), 5 μL × PCR buffer, 1.5 mM MgCl2, and 2 U Taq polymerase. The PCR products of GSTM1 and GSTT1 were coamplified using the GSTM1 primer set: 5′-GAA CTC CCT GAA AAG CTA AAG C-3′ and 5′-CTC AAA TA T ACG GTG G-3′ in the presence of 200 μmol dNTP (deoxynucleoside triphosphate), 1.5 mM MgCl2, and 2 U Taq polymerase.

Results and discussion

The GSTM1 gene deletions were found in 47 (82.5%) of 57 aplastic anemia patients and in 45 (60.0%) of 75 controls. The GSTT1 gene deletions were found in 41 (71.9%) of 57 patients and in 34 (45.3%) of 75 controls. Most aplastic anemia patients showed GSTM1 gene deletions (odds ratio [OR]: 3.1, 95% confidence interval [CI], 1.4-7.1, \(P = .001 \)). The incidence of GSTT1 gene deletions was also significantly elevated (OR: 3.1, 95% CI, 1.5-6.4, \(P = .004 \)) for aplastic anemia patients. These results revealed a significantly elevated risk of developing aplastic anemia in individuals with the GSTM1 and GSTT1 gene deletions (Table 1). Because some environmental exposures involve multiple chemical substrates of both GSTM1 and GSTT1, the possibility should be considered that combined deletions of both GSTM1 and GSTT1 interact to produce a higher risk of aplastic anemia.22 Our results also showed a higher odds ratio in patients with combined deletions of both GSTs than in those with a single isoform.

The incidence of the GSTM1 and GSTT1 gene deletions differs among ethnic groups, and it is higher in Koreans. In our study with Korean subjects, the incidence of GSTT1 deletion in healthy controls was significantly higher (45.3%) compared to those of white Americans (20.4%), African Americans (21.8%), and Mexican Americans (9.7%). The frequency of GSTM1 gene deletion was also higher (60%) in Koreans than in whites (50%) and African Americans (33%).13 We consider that the relatively high incidence of aplastic anemia in Koreans could be explained by the ethnic difference shown in the prevalence of the homozygous deleted genotypes of GSTM1 and GSTT1.

Of the 57 aplastic anemia patients, 10 patients (17.5%) had chromosomal abnormalities at the time of diagnosis. The chromosomal abnormalities were as follows: 3 cases of trisomy 8 and 1 case each of trisomy 8 and 9, t(8;21), inv(16), t(4;14), t(X;19), del(10), and monosomy 10 (Table 2). All aplastic anemia patients with chromosomal abnormalities showed GSTT1 gene deletions (\(P = .048 \)). The GSTT1 gene deletion has been associated with carcinogen-induced chromosomal changes in lymphocytes, with diepoxybutane being one such carcinogen.12 Recent data have also pointed to the interactions of the Fanconi anemia phenotype and GST, and especially the diepoxybutane-induced glutathione depletion and GST inhibition, as playing an important role in the oxidative stress in the Fanconi anemia phenotype.14 Therefore, chromosomal damage due to abnormal detoxification of environmental toxins might be an important pathophysiologic mechanism.

Table 1. Frequencies of GSTM1 and GSTT1 gene deletions in aplastic anemia patients and healthy controls

<table>
<thead>
<tr>
<th>Gene deletions</th>
<th>GSTM1 (%)</th>
<th>GSTT1 (%)</th>
<th>GSTM1 and GSTT1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA patients (n = 57)</td>
<td>47 (82.5)</td>
<td>41 (71.9)</td>
<td>35 (61.4)</td>
</tr>
<tr>
<td>Odds ratio</td>
<td>3.1 *</td>
<td>3.1 †</td>
<td>3.6‡</td>
</tr>
<tr>
<td>AA patients with CA (n = 10)</td>
<td>8 (80.0)§</td>
<td>10 (100)</td>
<td></td>
</tr>
</tbody>
</table>

*95% CI, 1.4-7.1 (\(P = .01 \)). †95% CI, 1.5-6.4 (\(P = .004 \)). ‡95% CI, 1.7-7.4 (\(P = .001 \)). §\(P = .29 \). || \(P = .048 \).
of aplastic anemia for patients with GSTT1 gene deletion, although the numbers are too small to draw a concrete conclusion.

We believe that further studies to define both the mechanism of GSTs leading to the development of aplastic anemia and specific substrates for GST-related aplastic anemia will be an important approach in understanding the pathophysiology of aplastic anemia.

References